Prediction of gas-to-olive oil partition coefficients of organic compounds using an artificial neural network.
نویسندگان
چکیده
The main aim of the present work was development of a quantitative structure-property relationship method using an artificial neural network (ANN) for predicting gas-to-olive oil partition coefficients of organic compounds. As a first step, a multiple linear regression (MLR) model was developed; the descriptors appearing in this model were considered as inputs for the ANN. These descriptors are: solvation connectivity index chi(-1), hydrophilic factor, conventional bond-order ID number, dipole moment and a total size index/weighted by atomic masses. Then a 5-5-1 neural network was generated for the prediction of gas-to-olive oil partition coefficients of 179 organic compounds including hydrocarbons, alkyl halides, alcohols, ethers, esters, ketones and benzene derivatives. The values of standard error for training, test and validation sets are 0.127, 0.122 and 0.162, respectively for ANN model. Comparisons between these values and other obtained statistical values reveal the superiority of the ANN model over the MLR one.
منابع مشابه
An Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression
Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipel...
متن کاملESTIMATION OF GAS HOLDUP AND INPUT POWER IN FROTH FLOTATION USING ARTIFICIAL NEURAL NETWORK
Multivariable regression and artificial neural network procedures were used to modeling of the input power and gas holdup of flotation. The stepwise nonlinear equations have shown greater accuracy than linear ones where they can predict input power, and gas holdup with the correlation coefficients of 0.79 thereby 0.51 in the linear, and R2=0.88 versus 0.52 in the non linear, respectively. ...
متن کاملSurface Tension Prediction of Hydrocarbon Mixtures Using Artificial Neural Network
In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...
متن کاملIdentifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm
The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...
متن کاملPrediction of the pharmaceutical solubility in water and organic solvents via different soft computing models
Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2009